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ELECTRICAL RESISTIVITY OF SOME PALLADIUM-SILVER ALLOYS

CONTAINING HYDROGEN AT 4.2 K

by Robert J. Smith and Dumas A. Otterson

Lewis Research Center

SUMMARY

The change in the electrical resistivities and lattice parameter of the palladium

(Pd) - silver (Ag) alloys 90Pd-10Ag, 80Pd-20Ag, 70Pd-30Ag, 60Pd-40Ag, and 50Pd-

50Ag were studied as functions of hydrogen content. (All nominal alloy compositions are

in atom percent. ) The electrical resistivity at 4. 2 K as a function of the hydrogen-

palladium atom ratio x plots show minimum and maximum values. (The 90Pd-10Ag

alloy showed only a maximum, and 50Pd-50Ag showed only a minimum.) These results

are qualitatively explained in terms of the model proposed by Bambakidis, Smith, and

Otterson (ref. 1) for the palladium-deuterium system and a modified palladium d-band.

The palladium d-band modification is associated with hydrogen-hydrogen, hydrogen-

palladium, and palladium-silver-hydrogen interactions. Two lattice constants are ob-

served for the alloys, 90Pd-10Ag, 80Pd-20Ag, and 70Pd-30Ag, for hydrogen-palladium

atom ratios up to approximately 0. 52, 0.35, and 0. 20, respectively. The observed

crystal structures were face centered cubic (fcc), and the difference in the lattice con-

stants decreased with increasing silver content. The lattice constant data were obtained

at approximately 295 K.

INTRODUCTION

The electrical resistivity p of palladium (Pd) arises from s-s and s-d scattering
of the conduction electrons (pss and Psd' respectively). For palladium Psd > > Pss
(ref. 2, pp. 265-269). In the palladium-hydrogen and palladium-silver systems, the hy-
drogen (ref. 2, p. 200) or silver s-electrons are assumed to fill the holes in the palla-
dium 4d band (ref. 2, pp. 297-302). This decreases the number of empty d-sites into
which the palladium conduction electrons may be scattered. Therefore, the contribution
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of Psd to the resistivity should decrease. But, both systems (Pd-H and Pd-Ag) show

increases in resistivity as the Pd d-band is filled.

In the palladium-silver system the silver ion is substitutionally alloyed into the fcc

palladium lattice; this alters the lattice potential and increases pss markedly (ref. 2,
pp. 296-302). But in the palladium-hydrogen system the hydrogen occupies the octa-

hedral (interstitial cube edge) sites of the face centered cubic (fcc) palladium lattice as

strongly screened ions (ref. 1) and may not effectively scatter the conduction electrons.

The increase in the resistivity with increasing hydrogen-palladium atom ratio, x, is

therefore more difficult to understand. Two phases, ao and 3, can be formed up to ap-

proximately 573 K. Both are fcc with the hydrogen ions in the octahedral sites. The

lattice parameters of the a- and P-phases at room temperature are approximately
3. 895x10 - 1 0 and 4. 025x10-10 meter (3. 895 and 4.025 A) respectively. The a-phase

exists for x 5 0. 015; a- and -phases coexist for 0. 015 < x < 0. 6; and only the /-

phase is found for x > 0. 6 (ref. 3, pp. 29, 123, 142, and 143).

A study of the resistivity of the ternary system palladium-silver-hydrogen, however,
does show features that lead to additional understanding of processes controlling the re-

sistivity of Pd alloys (refs. 4 and 5). Some of these results show an initial decrease in

the resistivity when hydrogen is first added. This is what could be expected if the hy-

drogen electron starts to fill the d-band, thereby decreasing the s-d scatter of the con-

duction electrons. As the hydrogen content increases, p eventually increases showing

that another scattering mechanism becomes dominant. Evidently, several processes are

active when the palladium d-states are being filled.

In this report, we measure the structural resistivities of the palladium-silver (Pd-

Ag) alloys 90Pd-10Ag, 80Pd-20Ag, 70Pd-30Ag, 60Pd-40Ag, and 50Pd-50Ag containing

hydrogen at 4. 2 K to obtain the temperature independent contribution. (All alloy com-

positions are in atom percent.) We then compare these results with our data taken at

273 K, the data taken by Carson, Lewis, and Schurter at 298 K (ref. 6), and that by
Sieverts and Hagen at "155-4840", (ref. 5). Our results are qualitatively explained in

terms of a modification of the palladium d-electron population due to the presence of sil-
ver and hydrogen. The concepts of s-d scattering of conduction electrons and the
screening theory of Bambakidis, Smith, and Otterson (ref. 1) are used.

EXPERIMENTAL

The resistivity samples used were in wire form of 0. 267 millimeter diameter. The

alloys were 90Pd-10OAg, 80Pd-20Ag, 70Pd-30Ag, 60Pd-40Ag, and 50Pd-50Ag. The anal-
yses of the wires are shown in table I. The manufacturer's stated purities were 99. 99+
atomic percent palladium and 99.999 atomic percent silver before alloying. The wires
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were annealed at 1023 K in a vacuum of 8x10 - 7 newton per square meter (6x10 - 9 torr)
for 2 hours.

Hydrogen was introduced into the alloys electrolytically in a 0. 1 N sulphuric acid
and sodium sulfide solution. The charging current density was approximately 8 milli-
amperes per square centimeter. The charging times varied from 2 to 120 minutes, de-
pending on the hydrogen content desired.

The resistivity measurements were made before and after hydrogen absorption for
each wire by the standard four-probe potentiometric technique using a constant current
dc source of 10 milliamperes and a standard resistor. The test temperatures were
4. 2 K (liquid helium) and 273 K (ice water). Resistivity measurements were made on
three adjacent sections of each wire. Each section was approximately 1 centimeter long.
In this way we were able to estimate the hydrogen distribution along the wire.

Immediately after the resistivity measurements the specimens were immersed in
liquid nitrogen until they could be weighed and placed in the desorption chamber. Storage
in liquid nitrogen prevents hydrogen loss (ref. 7). The elapsed time between removal
from the liquid nitrogen and desorption in the mass spectrometer did not exceed 10 min-
utes. The hydrogen was desorbed at 870 K. The hydrogen content is expressed herein
in the form of the hydrogen-palladium atom ratio x. The accuracy of the determination
is within 1 percent of the values shown. A hydrogen determination was made for each
centimeter section of wire for which a resistivity measurement was obtained.

Separate specimens were used for lattice parameter measurements. This permitted
the lattice parameter to be plotted against x. It took 8 to 16 hours to obtain these meas-
urements. Therefore, we attempted to determine the effect of hydrogen loss on the
measurements for the 8- to 16-hour period. After obtaining one set of X-ray powder
patterns in an 8- or 16-hour run, the same specimens were rerun the following day with-
out being removed from the camera. The hydrogen analyses were made just before the
first run and immediately after the second run.

RESULTS

Figure 1 shows the changes in the shape of P/Po as a function of x as the silver
content is increased from 90Pd-10Ag to 50Pd-50Ag in 10 atomic percent increments at
4. 2 K. (po is the resistivity of the alloy before hydrogen absorption and p is the re-
sistivity after hydrogen absorption.) The maximum in P/PO as a function of x for pure
palladium occurs for x x 0. 77. As silver is added, this maximum tends to move to
lower values of x. No maximum was found for 50Pd-50Ag for x 5 0. 54. A minimum in
P/Po as a function of x is first seen in 80Pd-20Ag for x a 0. 3 to 0. 4. For increasing
silver content, this minimum also moves to lower values of x. The minimum is still
observed in 50Pd-50Ag for x - 0. 07. No minimum occurs when silver content exceeds
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55 atomic percent (ref. 6). An initial increase followed by a decrease in p/po as a

function of x is observed for 80Pd-20Ag and 70Pd-30Ag. The plots of these results are

similar to those of references 4 to 6. We do not present our data at 273 K because it is

quite similar to the 4. 2 data and our present interest is in the structural resistivity.

In figure 2 the lattice parameter, ao, increases linearly with silver content in palla-

dium. However, the alloys show a slightly smaller lattice parameter than would be ex-

pected by Vegard's law, thus indicating increased electron overlap (ref. 8). In figure 3

a is plotted against x for each alloy. The alloys 90Pd-10OAg, 80Pd-20Ag, and

70Pd-30Ag show double values of ao for x < 0. 5. At x - 0. 1 the 70Pd-30Ag alloy

shows three values for ao on one specimen. Reference 3 indicates that the two-phase

region for the Pd-Ag-H system exists up to a silver content of approximately 27 atomic

percent. The analysis of our 70Pd-30Ag alloy shows values of 26. 81 and 29.00 atomic

percent silver. The first value could still show two phases while the second value is in

the single-phase region for the palladium-silver-hydrogen system. This would account

for our triplet value of lattice parameter for the 70Pd-30Ag alloy.
In general, our results show the lattice parameter increasing with x for all the al-

loys in the single-phase regions. But in the two-phase regions the values of the lattice
parameter remain rather constant until the systems become single phase again.

The results of our attempt to check the changes in lattice parameters due to hy-
drogen desorption while standing in air are inconclusive. The work does show that large
concentrations of hydrogen in the palladium-silver alloys are unstable (at room temper-
ature). The arrows in figures 3(b), (c), and (e) point to the initial and final values of x
for a given specimen. In figure 3(b) one specimen was initially charged to x = 0. 268
with a lattice parameter of 3.9299x10-10 meter (3.9299 A). However, after standing in
air at room temperature, the second measurement of the lattice parameter shows two
distinct values: 3.9337x10 - 1 0 and 3.949x10-10 meter (3.0337 and 3.9492 A). The final

value of x was 0. 145. The initial (a) and final (b) values of the lattice parameter are
indicated by the "branched" line. We suggest that in the initial X-ray measurement the
second lattice parameter was too weak to be detected. In any case, there is a large un-
certainty in the lattice parameter since the X-ray data take at least 8 hours per specimen
and desorption is occurring during the measurements. Whether or not a hysteresis
exists cannot be determined from these measurements.

DISCUSSION

It is now generally agreed that pure palladium has approximately 0.36 d-band hole
per atom. This has been determined by deHaas - van Alphen experiments (ref. 9). Be-
fore the deHaas - van Alphen experiments, the electrical resistivity (ref. 2) and mag-
netic susceptibility x (ref. 10) results were interpreted in terms of palladium having
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0. 52 to 0.6 d-hole per atom. In the palladium-silver system the curvature in the plot of

X as a function of the amount of silver (in at. %) in palladium was interpreted as showing
the variation of the density of states N(E) at the Fermi level E; that. is,

d2 N(E) * 0

dy 2

where y is the amount of silver (in at. %) in palladium. The plot shows a gentle curva-

ture that can be approximated by N(E) c (0. 55 - y)2 (ref. 2, p. 199). This variation in
N(E) at EF could account for the apparent 0. 55 d-hole, instead of a 0. 36 d-hole, per

palladium atom. In the x as a function of x data, x = 0 for x - 0. 6, which implies a
0. 6 d-hole per palladium atom. But the plot appeared to be linear for 0 - x 5 0. 6
(ref. 2, p. 200).

However, this is a two-phase system, except for 0. 015 > x > 0. 6. Eastman,
Cashion, and Switendick (ref. 11), in their photoemission studies of hydrogen in palla-
dium, reconcile the difference between the deHaas - van Alphen work (0. 36 d-hole) and

the hydrogen in palladium susceptibility work. They suggest that the absorbed hydrogen

first forms hybridized states with the existing palladium d-states; this results from

hydrogen-palladium interactions. These states strongly screen the hydrogen ions. Then
previously unoccupied 5sp-states are pulled below the Fermi surface EF and the top of
the d-band. These "new" low lying sp-states result primarily from hydrogen-hydrogen

interactions. The hydrogen electron fills both the originally empty 4d-states and the new

5sp states. This accounts for the apparent 0. 6, instead of the 0. 36, d-hole filling.
Recent susceptibility work by Frieske and Wicke (ref. 12) does show two nonlinear

portions on the X as a function of x plot at 293 K. The first nonlinear portion occurs
for 0 - x < 0. 015. For 0. 015 - x 5 0. 6 (ao + 0 region), the plot is linear (i.e., dN(E)/

dx = constant). This linear portion passes through X = 0 at x 0. 6 implying 0. 6 d-
hole per palladium atom. If we associate the nonlinear portion of x as a function of x
with a variation in N(E) at EF, we can assume that N(E) at EF varies more rapidly
per initial hydrogen atom addition than it does per silver atom addition; moreover, from
the initial slope of the X as a function of x plot (ref. 12), we can assume

d 2 N(E > )

dx 2  dy 2

It is the initial rapid variation in N(E) per hydrogen atom addition with which we as-

sociate the sharp increase in P/Po when plotted against x. However, the slope of P/Po
against x decreases as the silver content in palladium increases (as the volume
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difference between a- and P-phases Av decreases, d(p/p 0 )/dx decreases). More-

over, the silver atom modifies N(E) and the additional modification due to the hydrogen

atom is less pronounced. For those alloys that have a mixed-phase region (a + 0), the

resistivity is merely the average of pa + P.3 The a- and 0-phases coexist for certain

values of x for palladium-silver alloys up to 27 atomic percent silver at 293 K (ref. 13).
As the silver content is increased beyond 27 atomic percent, the remaining modification

is further reduced; that is, d 2N/dx2 -0. And the primary effect of hydrogen absorption

is merely filling the remaining electron holes below EF. This is most clearly seen in

the 60Pd-40Ag and 50Pd-50Ag alloys; p decreases initially on hydrogen absorption.

This should be the case if the only effect is to decrease the number of empty d-type

states below EF into which s-electrons may be scattered along with strong screening of

the hydrogen ion.

We assume the filling of the d-band occurs at the end of the two-phase region (fig. 3)
for the 90Pd-10Ag, 80Pd-20Ag, and 70Pd-30Ag alloys. This occurs beyond the minimum

for the 80Pd-20Ag and 70Pd-30Ag alloys. In fact, the filling occurs as p/p 0 is increas-

ing rapidly with increasing x as was discussed for the palladium-deuterium and

palladium-hydrogen systems (refs. 1 and 7). As assumed by Bambakidis, Smith, and
Otterson, when the d-band is almost filled, the contribution by Ps-d to p is small, and
the additional hydrogen ions are less well screened. The increase in p is attributed to

pss involving the less well screened hydrogen ions and hydrogen vacancies in the inter-
stitial octahedral sites. We assume the filling of the d-bands of 60Pd-40Ag and 50Pd-

50Ag alloys also occurs beyond the minimum of the P/Po as a function of x curve and
in the region where P/Po increases rapidly. The subsequent maxima indicate that peri-
odicity in the hydrogen lattice is taking effect (hydrogen vacancies are being filled) and
that P/Po will decrease as x increases.

From these results it appears that the effect of decreasing the d-band hole concen-
tration at EF by "implanting extra electrons" can be registered as a decrease in elec-
trical resistivity through a decrease in s -d scatter of conduction electrons. For silver
contents in excess of 27 atomic percent, the 0 phase does not appear. (Evidently, the
hydrogen ion is more easily accommodated in the larger lattice. ) We suggest the pres-
ence of the silver atom weakens the hydrogen-hydrogen interaction and, to some extent,
the hydrogen-palladium interactions.

CONCLUSIONS

1. The decrease in (d/dx)(p/p O) in the a-phase, with increasing silver content is
due to the modification of the Pd d-band (i. e., dp/dx decreases as the silver content
increases).
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2. As dp/dx decreases with increased silver content (the mixed phase region,
a + P) a subsequent decrease in P/Po is observed. This is associated with pp being
small due to its filled d-band (no s-d scatter) and initially well screened hydrogen ion.

3. In the single-phase palladium-silver (Pd-Ag) systems, such as 60Pd-40Ag and
50Pd-50Ag, the initial decrease in P/P0 due to hydrogen addition is caused by the rel-
atively simple filling of the palladium d-band. (The remaining modification of the Pd
d-band is considered small at these silver contents. )

4. The subsequent increase in P/P0 , in all the alloys, with increasing hydrogen con-
tent is caused by the s-s contribution to the resistivity associated with the less well
screened hydrogen ion.

5. The maximums observed at high hydrogen contents arise from decreased disorder
scattering as the hydrogen lattice fills.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, February 27, 1974,
502-01.
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TABLE I. - ANALYSIS OF

PALLADIUM -SILVER

ALLOYS

Alloy Silver content,

designation at. %
(a)

Pd. 9Ag. 1  9.79,9.60

Pd. 8Ag.2 20.02,19.81

Pd Ag.3 26.81,29.00

Pd. 6Ag.4 38.22,38.99

Pd 5 Ag 5 50.72,50.05

aThe results are from two

samples of each alloy.

20

Alloy

1.8- O Pd. 5 Ag0.5 O
6 Pd0. 6 Ag0. 4

O Pd0.7 Ag0. 3
c 1.6 - O Pd0. 8 Ag0.2

O Pd.9 Ago.1

1.4

SNormalization line

1.0 -- - - ------ ---

0 .1 .2 .3 .4 .5 .6 .7 .8 .9
Hydrogen - palladium atom ratio, x

Figure 1. - Resistivity ratio as function of hydrogen palladium atom ratio for palladium-silver
(Pd - Ag) alloys at 4 2 K.
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Figure Z - Lattice parameter as function of increasing
silver content in palladium.
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(a) 90 Pd - 10 Ag.

4. 05x 10
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3.95
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(b) 80 Pd - 20 Ag.
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0

4.05 -10 (c) 70 Pd - 30 Ag. Note: For x = 0. I there are three phases O, A, and 0.
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4004. 00 - 0 - '

~-0-

4.05 1 (d) 60 Pd- 40 Ag.

4. 00- I I I I I

(e) 50 Pd - 50 Ag.

Figure 3. - Lattice parameter as function of hydrogen-palladium atom ratio in palladium-
silver alloys.
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